

<u>Note</u>: you will use only 2 of the given ratios each time you set up an equation

3–8 Finding an Angle or Side Use the Law of Sines to find the indicated side x or angle θ .

Reminder: Solve the Triangle for #9-17odd (Find all missing sides and angles!)

13–18 ■ **Solving a Triangle** Sketch each triangle, and then solve the triangle using the Law of Sines.

- **13.** $\angle A = 50^{\circ}$, $\angle B = 68^{\circ}$, c = 230 **14.** $\angle A = 23^{\circ}$, $\angle B = 110^{\circ}$, c = 50**15.** $\angle A = 30^{\circ}$, $\angle C = 65^{\circ}$, b = 10
- **16.** $\angle A = 22^{\circ}, \ \ \angle B = 95^{\circ}, \ \ a = 420$
- **17.** $\angle B = 29^{\circ}$, $\angle C = 51^{\circ}$, b = 44

29. Finding Angles For the triangle shown, find (a) $\angle BCD$ and (b) $\angle DCA$.

31. Tracking a Satellite The path of a satellite orbiting the earth causes the satellite to pass directly over two tracking stations *A* and *B*, which are 50 mi apart. When the satellite is on one side of the two stations, the angles of elevation at *A* and *B* are

measured to be 87.0° and 84.2°, respectively.

- (a) How far is the satellite from station *A*?
- (b) How high is the satellite above the ground?

33. Distance Across a River To find the distance across a river, a surveyor chooses points *A* and *B*, which are 200 ft apart on one side of the river (see the figure). She then chooses a reference point *C* on the opposite side of the river and finds that $\angle BAC \approx 82^{\circ}$ and $\angle ABC \approx 52^{\circ}$. Approximate the distance from *A* to *C*.

35. The Leaning Tower of Pisa The bell tower of the cathedral in Pisa, Italy, leans 5.6° from the vertical. A tourist stands 105 m from its base, with the tower leaning directly toward her. She measures the angle of elevation to the top of the tower to be 29.2°. Find the length of the tower to the nearest meter.

37. Height of a Tree A tree on a hillside casts a shadow 215 ft down the hill. If the angle of inclination of the hillside is 22° to the horizontal and the angle of elevation of the sun is 52°, find the height of the tree.

6.5:

Law of Sines

39. Calculating a Distance Observers at *P* and *Q* are located on the side of a hill that is inclined 32° to the horizontal, as shown. The observer at *P* determines the angle of elevation to a hot-air balloon to be 62° . At the same instant the observer at *Q* measures the angle of elevation to the balloon to be 71° . If *P* is 60 m down the hill from *Q*, find the distance from *Q* to the balloon.

6.5: Law of Sines