Notes: 6.5 Law of Sines \rightarrow works for any

 type of triangle

Note: you will use only 2 of the given ratios each time you set up an equation

3-8 ■ Finding an Angle or Side the indicated side x or angle θ.
3.

$$
\begin{array}{rr}
98.4 & <C=180 \\
+24.6 \\
\hline 123^{\circ} & -123 \\
57^{\circ}
\end{array}
$$

$$
\begin{aligned}
& \frac{\sin 57^{\circ}}{x}=\frac{\sin 984^{\circ}}{376} \\
& x \cdot \sin 98.4=376 \sin 57 \\
& x=\frac{376 \sin 57}{\sin 98.4} \\
& x \approx 318.76
\end{aligned}
$$

Reminder: Solve the Triangle for \#9-17odd (Find all missing sides and angles!)

9-12 ■ Solving a Triangle Solve the triangle using the Law of

 Sines.
11.

12.

13-18 ■ Solving a Triangle Sketch each triangle, and then solve the triangle using the Law of Sines.
13. $\angle A=50^{\circ}, \angle B=68^{\circ}, \quad c=230$
14. $\angle A=23^{\circ}, \angle B=110^{\circ}, \quad c=50$
15. $\angle A=30^{\circ}, \quad \angle C=65^{\circ}, \quad b=10$
16. $\angle A=22^{\circ}, \quad \angle B=95^{\circ}, \quad a=420$
17. $\angle B=29^{\circ}, \quad \angle C=51^{\circ}, \quad b=44$
29. Finding Angles For the triangle shown, find (a) $\angle B C D$ and (b) $\angle D C A$.

31. Tracking a Satellite The path of a satellite orbiting the earth causes the satellite to pass directly over two tracking stations A and B, which are 50 mi apart. When the satellite is on one side of the two stations, the angles of elevation at A and B are measured to be 87.0° and 84.2°, respectively.
(a) How far is the satellite from station A ?
(b) How high is the satellite above the ground?

33. Distance Across a River To find the distance across a river, a surveyor chooses points A and B, which are 200 ft apart on one side of the river (see the figure). She then chooses a reference point C on the opposite side of the river and finds that $\angle B A C \approx 82^{\circ}$ and $\angle A B C \approx 52^{\circ}$. Approximate the distance from A to C.

35. The Leaning Tower of Pisa The bell tower of the cathedral in Pisa, Italy, leans 5.6° from the vertical. A tourist stands 105 m from its base, with the tower leaning directly toward her. She measures the angle of elevation to the top of the tower to be 29.2°. Find the length of the tower to the nearest meter.

37. Height of a Tree A tree on a hillside casts a shadow 215 ft down the hill. If the angle of inclination of the hillside is 22° to the horizontal and the angle of elevation of the sun is 52°, find the height of the tree.

6.5:

Law of Sines
39. Calculating a Distance Observers at P and Q are located on the side of a hill that is inclined 32° to the horizontal, as shown. The observer at P determines the angle of elevation to a hot-air balloon to be 62°. At the same instant the observer at Q measures the angle of elevation to the balloon to be 71°. If P is 60 m down the hill from Q, find the distance from Q to the balloon.

6.5:

Law of Sines

